Hilbert functions of points on Schubert varieties in orthogonal Grassmannians
نویسندگان
چکیده
Given a point on a Schubert variety in an orthogonal Grassmannian, we compute the multiplicity, more generally the Hilbert function. We first translate the problem from geometry to combinatorics by applying standard monomial theory. The solution of the resulting combinatorial problem forms the bulk of the paper. This approach has been followed earlier to solve the same problem for Grassmannians and symplectic Grassmannians. As an application, we present an interpretation of the multiplicity as the number of non-intersecting lattice paths of a certain kind. A more important application, although it does not appear here but elsewhere, is to the computation of the initial ideal, with respect to certain convenient monomial orders, of the ideal of the tangent cone to the Schubert variety. Taking the Schubert variety to be of a special kind and the point to be the ‘identity coset,’ our problem specializes to one about Pfaffian ideals, treatments of which by different methods exist in the literature. Also available in the literature is a geometric solution when the point is a ‘generic singularity.’
منابع مشابه
Multiplicities of Points on Schubert Varieties in Grassmannians
An important invariant of a singular point on an algebraic variety X is its multiplicity : the normalized leading coefficient of the Hilbert polynomial of the local ring. The main result of the present note is an explicit determinantal formula for the multiplicities of points on Schubert varieties in Grassmannians. This is a simplification of a formula obtained in [5]. More recently, the recurr...
متن کاملPieri-type Formulas for Maximal Isotropic Grassmannians via Triple Intersections
We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an exact description of the intersection of two Schubert varieties, from which the multiplicities (which are powers o...
متن کاملRigidity of Schubert Classes in Orthogonal Grassmannians
A Schubert class σ in the cohomology of a homogeneous variety X is called rigid if the only projective subvarieties of X representing σ are Schubert varieties. A Schubert class σ is called multi rigid if the only projective subvarieties representing positive integral multiples of σ are unions of Schubert varieties. In this paper, we discuss the rigidity and multi rigidity of Schubert classes in...
متن کاملInitial ideals of tangent cones to Schubert varieties in orthogonal Grassmannians
We compute the initial ideals, with respect to certain conveniently chosen term orders, of ideals of tangent cones at torus fixed points to Schubert varieties in orthogonal Grassmannians. The initial ideals turn out to be square-free monomial ideals and therefore StanleyReisner face rings of simplicial complexes. We describe these complexes. The maximal faces of these complexes encode certain s...
متن کاملOn Multiplicities of Points on Schubert Varieties in Grassmannians
Abstract. We answer some questions related to multiplicity formulas by Rosenthal and Zelevinsky and by Lakshmibai and Weyman for points on Schubert varieties in Grassmannians. In particular, we give combinatorial interpretations in terms of nonintersecting lattice paths of these formulas, which makes the equality of the two formulas immediately obvious. Furthermore we provide an alternative det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009